TABLE OF COMMON MONATOMIC IONS

- fixed-charge metals in Groups IA, IIA, and IIIA
- fixed-charge metals in Groups IB and IIB (transition elements)
- common-charge non-metals from Groups IVA, VA, VIA, and VIIA
- semi-metal from Group IVA

ing the group number from 8. Non-metal elements have a common or fixed charge/ oxidation when compounded with metals. Yet oxidation values can vary depending on which non-metal elements they are combined with, as in polyatomic ions and molecular compounds.

Copyright 2005 by Matthew Medeiros. All rights reserved.

TABLE OF COMMON VARIABLE-CHARGE METALS

- variable-charge transisiton metals
- variable-charge metals from groups IIIA and IVA

Comment: The variable-charge nature of certain metals presents a unique outcome in compound formation. Since these metals can form multiple charges they will compound with nonmetals (or polyatomic ions) in differing ratios. Therefore, the Roman numeral designation is required in the nomenclature to specify the correct compound. For example, there are several types of manganese oxides, each with characteristic chemical and physical properties. Manganese (III) oxide, Mn_2O_3 , is a black mineral insoluble in water. Whereas, manganese (VII) oxide, Mn_2O_7 , is a dark reddish mineral which is soluble in water. Manganese will also form two other oxides each with differing colors and solubilities.

Copyright 2005 by Matthew Medeiros. All rights reserved.

LIST OF COMMON POLYATOMIC IONS

(Monatomic ions are listed first in the family.) Copyright 2005 by Matthew Medeiros. All rights reserved.

NITROGEN		ORGANIC (CARBON CONT.)		NOTES	
N^{3-} NO ₂ ⁻ NO ₃ ⁻ NH ₄ ⁺	nitride nitr <u>ite</u> nitr<u>ate</u> ammonium	HCOO-	formate (derived from <i>formic acid</i> , also written HCO_2^{-1})	-ate	used to designate the oxyanion with the higher number of oxygen atoms
PHOSPHORUS		$\Pi_{3}C_{2}O_{2}$	from <i>acetic acid</i> ,	-ite	used to designate
P ³⁻ PO ₃ ³⁻ HPO ₃ ²⁻	phosphide phosph <u>ite</u> hydrogen phosphite	$C_{2}O_{4}^{2}$	also commonly written CH_3COO^{-}) oxalate (derived		the oxyanion with the lower number of oxygen atoms
PO ₄ ³⁻ HPO ₄ ²⁻	phosph<u>ate</u> hydrogren phos-	2 7	from <i>oxalic acid</i>)	thio	add one sulfur, remove one oxygen
H ₂ PO ₄ ⁻ SULFUR	phate <u>di</u> hydrogen phos- phate	OXYGEN O ²⁻ O ₂ ²⁻ OH ⁻	oxide <u>per</u> oxide hydroxide	per	one additional oxygen one less oxygen
S^{2-} SO_{3}^{2-} HSO_{3}^{-} SO_{4}^{2-} HSO_{4}^{-} $S_{2}O_{3}^{-2-}$ $S_{3}O_{7}^{-2-}$	sulfide sulf <u>ite</u> hydrogen sulfite sulf<u>ate</u> hydrogen sulfate <u>thio</u> sulfate <u>di</u> sulfate	CHLORINTCl-ClO4-ClO3-ClO2-ClO-	E chloride <i>per</i> chlorate chlor <u>ate</u> chlor <u>ite</u> <u>hypo</u> chlorite	-ide	although this suffix is reserved for the monatomic anion, the exceptions are cyanide, hydroxide, and peroxide
CARBON		METALS/SEMI-METALS		di	two or double (i.e., as with dichromate,
C^{4-} CO_{3}^{-2-} HCO_{3}^{-} CN^{-}	carbide carbonate hydrogen carbonate (or bicarbonate) cyanide	$ \begin{array}{c} {\rm MnO_4^{-1}} \\ {\rm CrO_4^{-2-}} \\ {\rm Cr_2O_7^{-2-}} \\ {\rm AsO_4^{-3-}} \\ {\rm SiO_4^{-4-}} \end{array} $	permanganate chromate <u><i>di</i></u> chromate arsenate silicate		subscripts on the chromate ion and reduce the oxygen by one; retain charge)
		OTHER COMMON ANIONS		SOME COMBINED IONS	
		BO_{3}^{3-} BrO_{3}^{-} IO_{3}^{-} IO_{4}^{-} OCN^{-} SCN^{-}	borate bromate iodate <i>per</i> iodate cyanate <u>thio</u> cyanate	HS ⁻ NH ₄ PO ₄ ²⁻ HC ₂ O ₄ ⁻ Fe(CN) ₆ ³⁻	hydrogen sulfide ammonium phos- phate hydrogen oxalate hexacyanoferrate