Answers to Problems: Dimensional Analysis

NOTE: The following problems can be solved using relationships or conversion factors other than those shown. In some cases, alternative conversion factors are indicated.

1. Convert 3.56 g to cg.

\[? \text{cg} = 3.56 \text{g} \times \frac{100 \text{ cg}}{1 \text{ g}} = 356 \text{ cg} \]

2. Convert 42.5 mL to dL.

\[? \text{dL} = 42.5 \text{mL} \times \frac{1 \text{cL}}{10 \text{ mL}} \times \frac{1 \text{dL}}{10 \text{cL}} = 0.425 \text{ dL} \]

This can also be solved using the relationship 100 mL = 1 dL

3. Convert 204 dm to km.

\[? \text{km} = 204 \text{dm} \times \frac{1 \text{m}}{10 \text{ dm}} \times \frac{1 \text{km}}{1000 \text{ m}} = 0.0204 \text{ km} \]

4. Convert 45.4 kg to Mg.

\[? \text{Mg} = 45.4 \text{kg} \times \frac{1 \text{Mg}}{1000 \text{ kg}} = 0.0454 \text{ Mg} = 4.54 \times 10^{-2} \text{ Mg} \]

This can also be solved using the relationships 1000 g = 1 kg and 1 000 000 g = 1 Mg

5. Convert 2.60 cL to µL.

\[? \text{µL} = 2.60 \text{cL} \times \frac{10 \text{mL}}{1 \text{ cL}} \times \frac{1000 \text{µL}}{1 \text{mL}} = 26000 \text{µL} = 2.60 \times 10^4 \text{µL} \]

This can also be solved using the relationships 100 cL = 1 L and 1 x 10^6 µL = 1 L

6. Convert 254 pm to nm.

\[? \text{nm} = 254 \text{pm} \times \frac{1 \text{nm}}{1000 \text{ pm}} = 0.254 \text{ nm} = 2.54 \times 10^{-1} \text{ nm} \]

This can also be solved using the relationships 1 x 10^{12} pm = 1 m and 1 m = 1 x 10^9 nm
7. The mass of a hydrogen atom is 1.67 x 10^{-24} g. Express this mass in pg.

\[?\text{pg} = 1.67 \times 10^{-24} \text{ g} \times \frac{1 \times 10^{12} \text{pg}}{1 \text{ g}} = 1.67 \times 10^{-12} \text{ pg} \]

8. The diameter of a carbon atom is 182 pm. What is the diameter in a) nm b) cm c) m ?

a) \[?\text{nm} = 182 \text{ pm} \times \frac{1 \text{ nm}}{1000 \text{ pm}} = 1.82 \times 10^{-1} \text{ nm} \]

This can also be solved using the relationships \(1 \times 10^{12} \text{ pm} = 1 \text{ m} \) and \(1 \text{ m} = 1 \times 10^9 \text{ nm} \)

b) \[?\text{cm} = 182 \text{ pm} \times \frac{1 \text{ nm}}{1000 \text{ pm}} \times \frac{1 \mu\text{m}}{1000 \text{ nm}} \times \frac{1 \text{ mm}}{1000 \mu\text{m}} \times \frac{1 \text{ cm}}{10 \text{ mm}} = 1.82 \times 10^{-8} \text{ cm} \]

This can also be solved using the relationships \(1 \times 10^{12} \text{ pm} = 1 \text{ m} \) and \(1 \text{ m} = 100 \text{ cm} \)

c) \[?\text{m} = 182 \text{ pm} \times \frac{1 \text{ m}}{1 \times 10^{12} \text{ pm}} = 1.82 \times 10^{-10} \text{ m} \]

9. In a gas chromatography experiment, a 5.0 \mu\text{L} sample of gasoline was analyzed. Express this volume in mL.

\[?\text{mL} = 5.0 \mu\text{L} \times \frac{1 \text{ mL}}{1000 \mu\text{L}} = 5.0 \times 10^{-3} \text{ mL} \]

This can also be solved using the relationships \(1 \text{ L} = 1 \times 10^6 \mu\text{L} \) and \(1 \text{ L} = 1 \times 10^3 \text{ mL} \)

10. The speed of light is 3.0 \times 10^{10} \text{ cm/s}. Calculate the length of a light year in a) m b) km. (A light year is the distance light travels in one year [365 days])

\[1 \text{ light year} = \frac{?\text{m}}{1 \text{ year}} = \frac{3.0 \times 10^{10} \text{ cm}}{1 \text{ s}} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{24 \text{ hr}}{1 \text{ day}} \times \frac{365 \text{ days}}{1 \text{ year}} \times \frac{1 \text{ m}}{100 \text{ cm}} = 9.5 \times 10^{15} \text{ m} \]

Note: This set up is simplified by using the relationship that a light year will be expressed as the distance in meters that light travels in one year.
11. How many dg are there in 1.0 kg of flour?

\[
? \text{dg} = 1.0 \text{ kg} \times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{10 \text{ dg}}{1 \text{ g}} = 1.0 \times 10^4 \text{ dg}
\]

12. A jogger runs a km in 6.0 minutes. Calculate her speed in a) km/hr b) m/min c) cm/s.

a) \[
\frac{\text{km}}{\text{hr}} = \frac{1.0 \text{ km}}{6.0 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} = \frac{10 \text{ km}}{1 \text{ hr}}
\]

b) \[
\frac{\text{m}}{\text{min}} = \frac{1.0 \text{ km}}{6.0 \text{ min}} \times \frac{1000 \text{ m}}{1 \text{ km}} = \frac{167 \text{ m}}{1 \text{ min}} = 170 \text{ m/min} \quad (2 \text{ significant figures})
\]

c) \[
\frac{\text{cm}}{\text{s}} = \frac{1.0 \text{ km}}{6.0 \text{ min}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{1 \text{ min}}{60 \text{ s}} = \frac{278 \text{ cm}}{1 \text{ s}} = 280 \text{ cm/s}
\]

(2 significant figures)